

工程名称:国际协同创新区北区N-05项目
建筑方案设计(不含地下方案设计)

ARCHITECTURAL SCHEME DESIGN (EXCLUDING UNDERGROUND SCHEME DESIGN)
OF N-05 PROJECT IN NORTH AREA OF INTERNATIONAL COLLABORATIVE INNOVATION ZONE

业绩图册
PORTFOLIO

SOM

投标人 / APPLICANT: SKIDMORE, OWINGS & MERRILL LLP

日期/ DATE: 2025年 7月 28日

目录

河套深港科技创新合作区国际协同创新区北区项目(二标段)	1
GENESIS 码头园区	3
加州大学默塞德分校2020项目	7
加州大学默塞德分校生物医学科学和物理实验室大楼	11
加州大学默塞德分校可持续性研究和工程大楼	13
莱斯大学Ralph S. O'Connor工程与科学大楼	15
加州大学旧金山分校研究与学术大楼	19
新加坡Elementum生物医药办公大楼	21
GENESIS TOWERS大厦	23
罗氏诊断公司苏州园区	25
创智天地	27
康奈尔大学纽约市技术学院校区——框架规	29
哈佛大学西北科学大楼	31
加州大学旧金山分校桑德勒神经科学中心	33

河套深港科技创新合作区国际协同创新区 北区项目(二标段)

Hetao Shenzhen-Hong Kong Innovation Start-Up Area Science Park

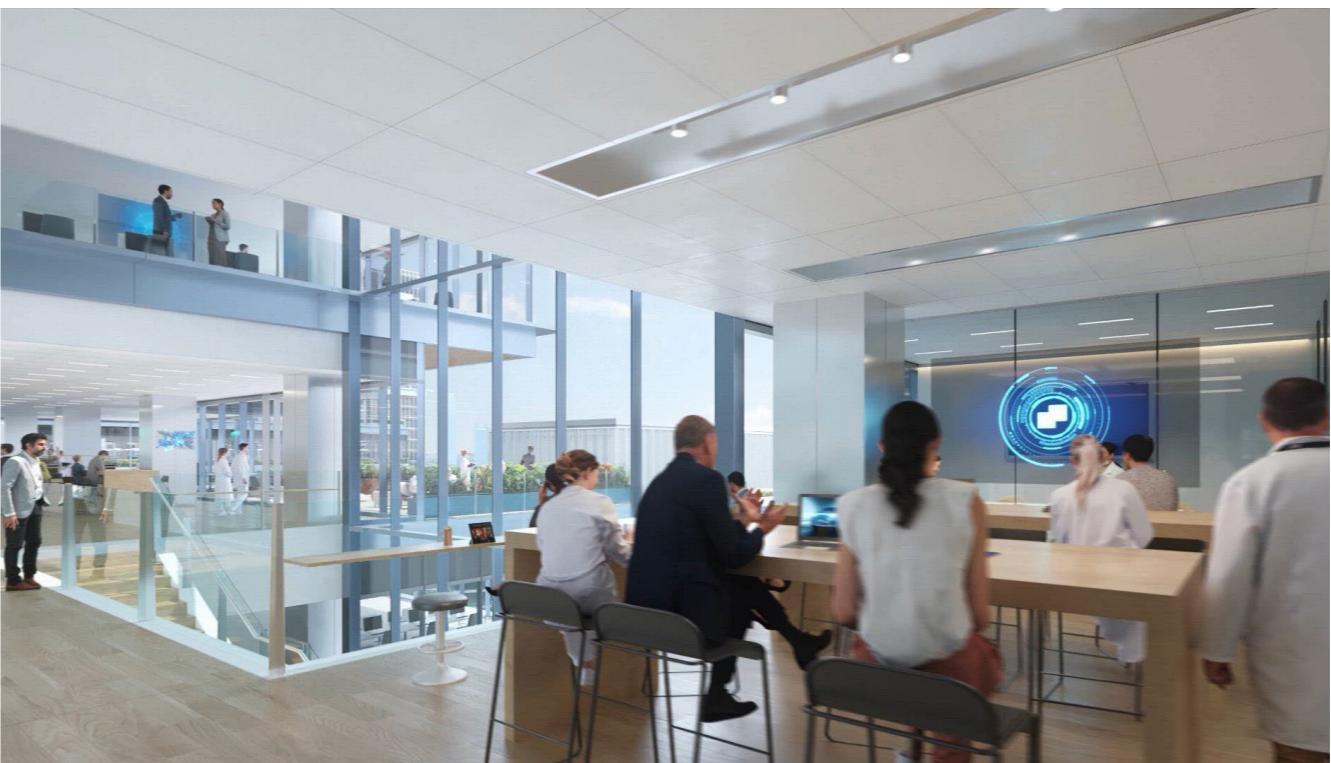
地点:中国深圳
客户:深圳深港科技创新合作区发展有限公司
工作范围:建筑设计、结构工程、景观设计
功能:实验室、办公、配套设施
用地面积:4.46 公顷
规模: 227,500 平方米
设计完成:设计进行中

河套深圳-香港科技创新合作区将成为世界级的科学和创新枢纽,重点关注医疗技术、大数据、人工智能、机器人技术、新材料、微电子和金融技术六个主要方向。

整体规划的空间组织以一条主要步行轴线为中心,该轴线从黄岗港站起,沿场地南北方向对角线延伸至福邻站。这条中央交通轴线在B1层和地面层提供多层次的通道,成为所有地块的主要公共出入口。与此同时,东西向的绿色廊道作为建筑公共步行通道,形成步行街道和开放庭院,在实体上与视觉上将接城市与面向香港山体的滨水区连接起来。这些开放廊道引导主导风的流向以最大化场地的空气流通,从而提升每个地块的行人舒适度。

协同创新区与港深创新科技园隔深圳河相望。项目西北角集中布置较多建筑高度100米左右住宅及办公,西南方向主要为口岸枢纽。项目紧邻福田红树林国家级自然保护区、香港米埔自然保护区,是东半球候鸟重要的迁徙中途停歇地和重要的越冬地。

该区旨在开展前沿科学探索、关键技术研发,并掌握一批核心通用关键技术,为粤港澳大湾区建设国际领先的科技创新中心提供强有力支持。


Location: Shenzhen, China
Client: Shenzhen-Hong Kong Technology Innovation Corporation Zone Development Co., Ltd.
Scope: Architecture Design, Structural Engineering, Landscape Design
Program: Lab, Office, Amenities
Site Area: 4.46 hectares
Size: 221,500 m²
Completion: Design In-Progress

The Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone will become a world-class hub for science and innovation, focusing on six major directions: medical technology, big data, artificial intelligence, robotics, new materials, microelectronics, and financial technology.

The spatial organization of the overall masterplan centers along a primary pedestrian axis that links the connections from Huanggang Port Station diagonally across the site in the North-South cardinal directions to Fulin Station. This central circulation spine provides multi-level access on B1 and the ground level and serves as the primary public interface and access point for all parcels. A secondary grain of East-West oriented green corridors are established as building easements that sponsor pedestrian streets and open courtyards to physically and visually connect the city side with the riverfront side that faces towards the Mountains of Hong Kong. These open corridors enhance pedestrian comfort in each parcel by capturing prevailing winds to maximize airflow across the site.

The Co-Innovation Zone is located across the Shenzhen River from the Hong Kong-Shenzhen Innovation and Technology Park. In the northwest corner of the project, there are residential and office buildings with a building height of about 100 meters, while the southwest corner is mainly a port hub. The project is adjacent to Futian Mangrove National Nature Reserve and Hong Kong Mai Po Nature Reserve, which are important stopovers and wintering grounds for migratory birds in the eastern hemisphere.

The zone aims to conduct cutting-edge scientific exploration, key technology research and development, and master a batch of core common key technologies, providing strong support for the construction of an internationally leading science and technology innovation center in the Greater Bay Area of Guangdong, Hong Kong, and Macao.

Genesis 码头园区

Genesis Marina

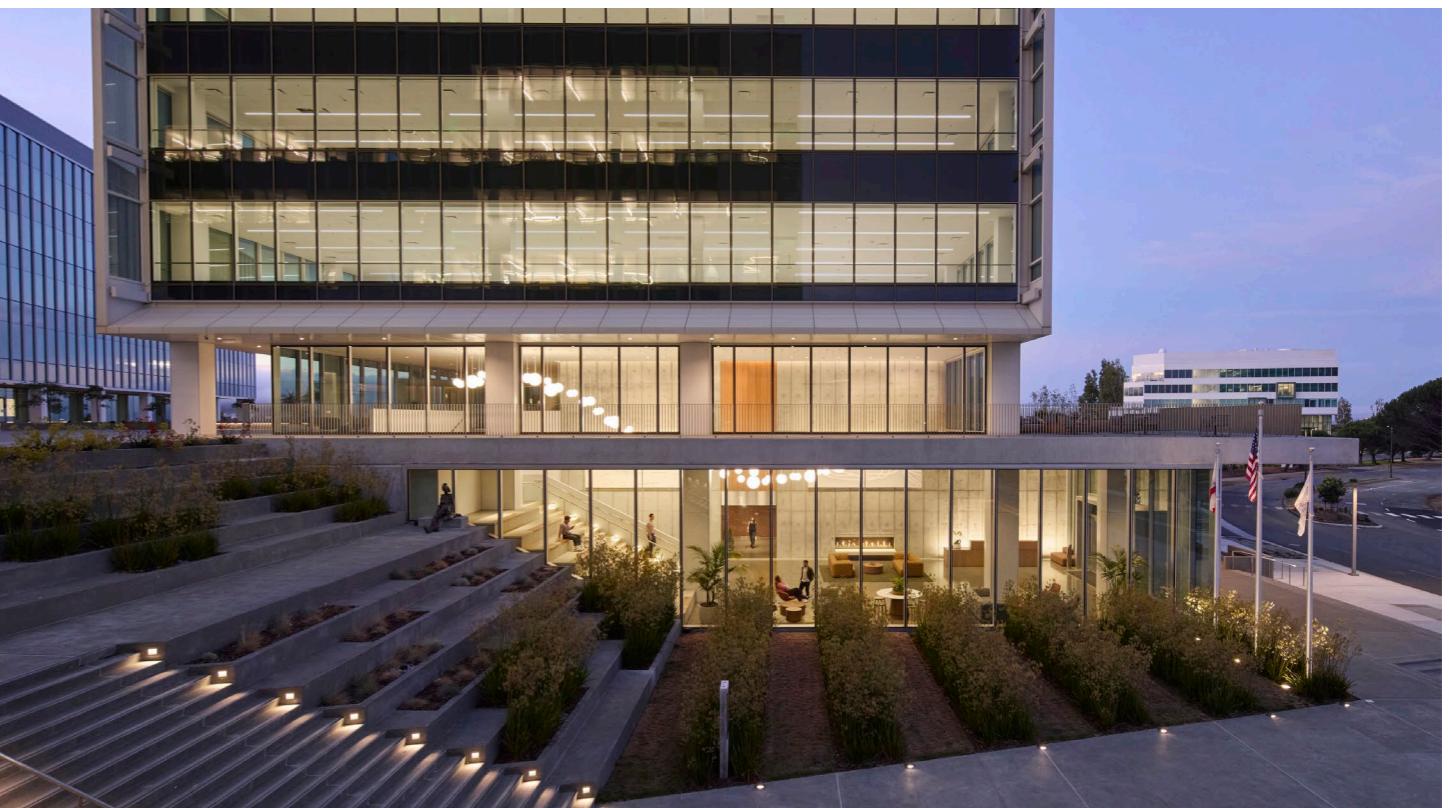
地点: 加州布里斯本市
客户: Phase 3 Real Estate Partners
工作范围: 建筑设计
功能: 办公、实验室、配套设施
用地面积: 9 英亩
规模: 35,000 平方英尺
建筑高度: 134 英尺
竣工年份: 2024

Genesis Marina 是 Phase 3 房地产公司的一个项目, 由三座生命科学大楼组成, 包括两座六层楼, 和一座七层楼, 所有建筑都位于一个两层楼的裙楼停车场上。总共提供了大约 500,000 平方英尺的 A 级实验室、办公室、餐厅和商业娱乐空间的建筑面积。

一个配备了执行董事会议室和会议室的专门会议中心, 将提供租户免费使用。一个新的最先进的健身中心将设有开放式健身房和团体课程的私人工作室。高端餐厅将开放给公众和租户使用, 可举办晚宴、私人活动等。

占地近 9 英亩的场地位于布里斯班市的 Sierra Point 半岛, 以盐沼、美国 101 号高速公路和北面的旧金山湾为界。有三种公共交通——Bart、Caltrain 和旧金山湾渡轮——可选择方便地到达 Genesis Marina 站点, 这将改善往返园区的交通并减少驱车通行对环境的影响。

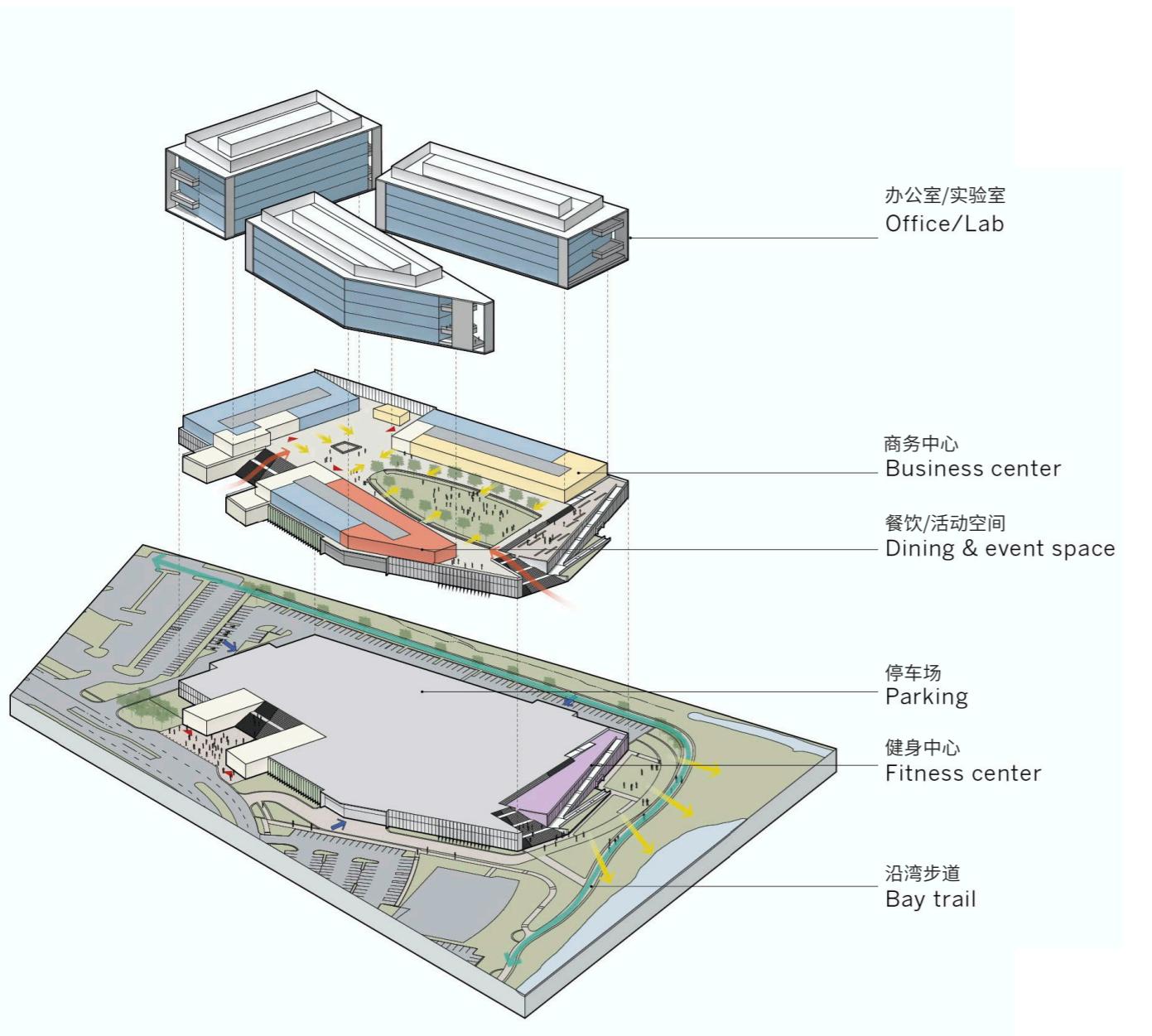
建成后, 此园区将把该地区的科学界与一些迄今为止设计的最现代化和最先进的设施连接起来。


Location: Brisbane, California
Client: Phase 3 Real Estate Partners
Scope: Architecture
Program: Office, Lab, Amenity
Site Area: 9 acres
Size: 35,000 ft²
Building Height: 134 ft
Date: 2024

Genesis Marina, a project for Phase 3 Real Estate Partners, consists of three life science buildings—two at six stories, one at seven—all of which rest on a two-story podium parking garage. Altogether, the buildings provide approximately 500,000 square feet of Class A laboratory, office, restaurant, and commercial recreation spaces.

A dedicated conference center, equipped with executive board rooms and conference rooms, will be available to tenants, utilized free of charge on a first come, first served basis. A new state-of-the-art fitness center will feature open gym areas and private studios for group classes. A high-end restaurant will be open to the public and tenants to host dinner meetings, private events, and more.

The almost nine-acre site is located on the Sierra Point Peninsula in the City of Brisbane, bounded by salt marshes, U.S. Highway 101, and San Francisco Bay to the north. Three public transit options—Bart, Caltrain, and the San Francisco Bay Ferry—are within easy access to the Genesis Marina site, which will improve transit to and from the campus and reduce travel impacts on the environment.


Once complete, the campus will connect the region's scientific community with some of the most modern and cutting edge facilities designed to-date.

右图:一个公共坡道, 将架高公共
开放空间连接到沿湾步道

At right: Incorporated a public
accessible ramp that connects
the elevated public open space
to the Bay Trail

按照 LEED 黄金级标准建造的三栋生命科学园区开发项目，包括超过 35,000 平方英尺的高效楼板面积，和符合实验室标准的健全机电系统。

Built to LEED Gold standard, the three building life science campus development includes efficient floor plates over 35,000 ft² and robust MEP systems to accommodate lab standards.

[↑]
沿湾水岸的公共开放空间,扩大了
室外健身区域。
Enlarged outdoor fitness area
within the public access along
the shoreline

加州大学默塞德分校——2020年项目

University of California Merced 2020 Project

地点:美国 加利福尼亚州 默塞德

客户:加州大学默塞德分校

工作范围:城市设计 + 规划、建筑, 可持续性设计

功能:教育

规模: 120,774 平方米

竣工年份: 2020

Location: Merced, California, USA

Client: University of California, Merced

Scope: Urban Design + Planning, Architecture,
Sustainable Design

Program: Education

Size: 120,774 sm

Date: 2020

加州大学默塞德分校是加州大学系统中历史最短的校园,并且是21世纪建立的第一所北美研究型大学。其使命是创造一个倡导学习、探索和参与的社区,同时发扬圣华金河谷地区的传统,为该地区的未来发展发挥重要作用。

在2002年设计了大学的原始总体规划后,SOM有幸领导了2020年项目——这是一个雄心勃勃的公私合作项目,使校园占地面积几乎增加了一倍,以支持 2020年10,000名学生的入学。该项目涉及新的校园规划、设计指南、基础设施、开放空间和11 座新建筑物,包括最先进的研究设施、实验室、温室和餐厅。

该项目采用可持续性设计,旨在适应不同的用途和未来的扩建,其总体规划营造出紧凑、宜走适行的环境,并设有动态的公共空间,鼓励自发互动。该大学是美国第一家实现碳中和的公共研究机构,并且是唯一一家所有建筑物均获得 LEED认证的学术园区,2020年项目的所有建筑物均获得了LEED白金认证。

可持续性设计

LEED铂金级别认证

项目奖项与荣誉

2023 美国地区卓越奖,城市土地学会

2019 卓越奖,美国规划协会加州分会

2018 卓越规划成就奖,美国规划协会加州中部分会

2017 P3奖:金奖——最佳社会基础设施项目,P3奖

2017 优异奖,美国规划协会加利福尼亚分会

2017 城市设计优异奖,美国建筑师协会——加州理事会

The University of California, Merced is the youngest campus in the UC system and the first North American research university to be established in the 21st century. Its mission is to cultivate a community bound by learning, discovery, and engagement, while also celebrating the heritage of the San Joaquin Valley and playing an important role in the region's future.

After designing the university's original master plan in 2002, SOM was honored to lead the 2020 Project—an ambitious public-private partnership that nearly doubles the campus footprint to support the enrollment of 10,000 students by the year 2020. The project consists of a new campus plan, design guidelines, infrastructure, open space, and 11 new buildings, including state-of-the-art research facilities, laboratories, a greenhouse, and dining hall.

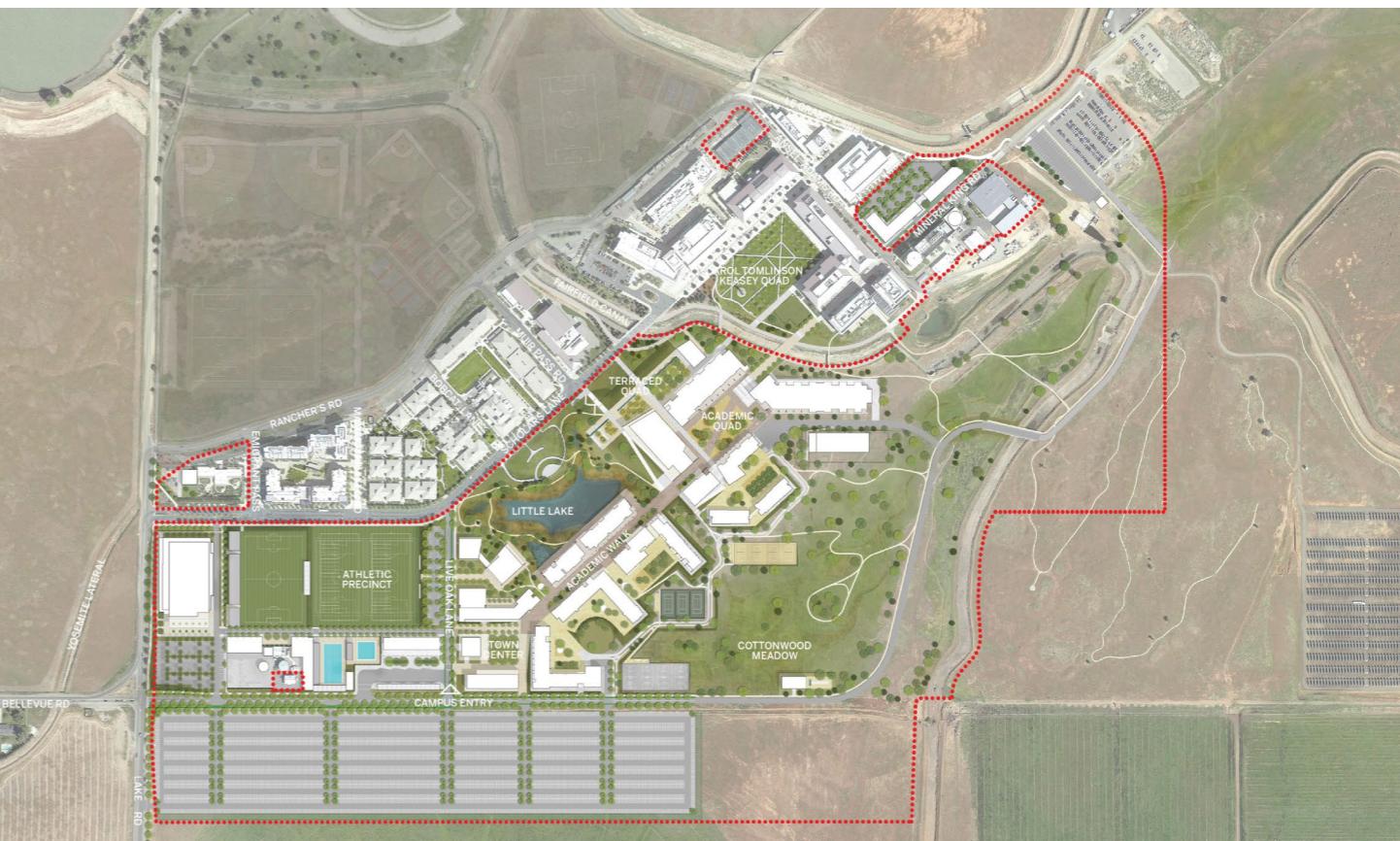
The project is sustainably designed to adapt for different uses and future expansion, with a master plan that is organized as a compact, walkable environment with dynamic public spaces that encourage spontaneous interaction. The university is the first public research institution in the U.S. to achieve carbon neutrality and the only academic campus to have every building LEED certified, with all 2020 Project buildings earning LEED Platinum certification.

Sustainable Design

LEED Platinum Certified

Project Awards and Recognition

2023 Americas Award for Excellence, The Urban Land Institute (ULI)


2019 Award of Excellence, American Planning Association California

2018 Excellence and Achievement in Planning Award, American Planning Association - California Chapter, Central Section

2017 P3 Award: Gold - Best Social Infrastructure Project, P3 Awards

2017 Award of Merit, American Planning Association, California Chapter

2017 Merit Award-Urban Design, AIA—California Council

动态的公共空间鼓励自发互动,促进跨学科的合作,并欢迎更多元的社区。

Dynamic public encourages spontaneous interaction, enabling interdisciplinary collaboration, and welcoming the wider community.

[←] 为了实现可持续发展目标,以能够适应不同用途和未来扩建的方式打造校园。

To achieve sustainability goals, the campus will be built in a way that can be adapted to changes in use and future expansion.

[↓] 总体规划营造出紧凑、宜走适行的环境,为生活,工作和学习提供了启发性的场所。

The masterplan sets out the campus as a compact, walkable environment that provides an inspiring place to live, work and learn.

[↑] 该项目是推广和可持续增长的典范。

The project is a model for outreach and sustainable growth.

[←] 规划上营造出紧凑、宜走适行的环境,为生活,工作和学习提供了启发性的场所。

The plan sets out the campus as a compact, walkable environment that provides an inspiring place to live, work and learn.

加州大学默塞德分校 生物医学科学和物理实验室大楼

UC Merced, Biomedical Sciences and Physics Laboratory Building

地点:美国加利福尼亚州默塞德市

客户:加州大学默塞德分校

工作范围:建筑设计、结构工程、室内设计、图像标识设计

功能:研发办公、实验室

规模:27,313 平方米

建筑高度:20.73 米

竣工年份:2020

作为加州大学默塞德分校2020年规划项目的一部分,生物医学科学和物理实验室大楼加强了大学整体的发展目标,即在充满活力的公共环境下,培育出鼓舞人心的生活和学习氛围。

生物医学科学和物理实验室大楼是新学术四方院的两个教学和研究实验室之一。该建筑连接了现有的和新的校园区域,为新的校园核心区增添了活力和特色。

位于大楼周边的开放式办公区和动线最大限度地利用了自然采光,并有一览无余的自然景观,直达建筑内部的实验室区块。宽阔的中央走廊具有双重功能,既是从服务电梯到实验室后勤区的设施通道,也是通抵共享设备空间的动线。

实验室区围绕可重新配置的实验室和实验室配套模块进行组织,并设置在标准结构网格内,可为每个研究团队量身定制,并随着时间的推移进行重新配置,以解决课程不断发展的灵活性问题。该模块允许标准的工作台和循环间隙,同时限制结构跨度以帮助减少振动。专门的BSL-3和ABSL-3研究设施以及一个小动物饲养室从主楼流线中移除。动物饲养室可直接通往专用装卸区。

通过巧妙的屋顶悬挑和墙体延伸设计来减少太阳辐射热,再加上高效的照明和机械系统,这座 LEED® 铂金建筑的设计能耗比加州能源法规要求低 52%。能源效率在研究实验室中尤其困难,我们的设计使部分通过从非实验室空间转移预处理的送风,而非使用100%的外部空气。该项目还配套学校实现“三净零”目标,即净零能耗、净零填埋垃圾和净零温室气体排放。

可持续性设计

LEED 建筑设计+施工(新建工程)铂金级认证

Location: Merced, California

Client: University of California, Merced

Scope: Architecture, Structural Engineering, Interior, Graphics

Program: Research & Development Office, Labs

Size: 27,313 m²

Building Height: 20.73 m

Date: 2020

Part of the UC Merced 2020 Project, the Biomedical Sciences and Physics Laboratory Building strengthens the University's objective to nurture an inspiring living and learning atmosphere, supported by a dynamic public realm.

The Biomedical Sciences and Physics Laboratory Building is one of two teaching and research laboratories anchoring the new Academic Quad. The building bridges the existing and new campus areas, contributing vitality and identity to a new heart of the campus.

Open office areas and circulation located at the building perimeter maximize daylight and sweeping natural views through to the laboratory blocks at the interior of the building. A wide central corridor serves double duty as utility access from the service elevator to the back of the laboratories, and as an easily accessible space for shared equipment.

Organized around a reconfigurable lab and lab support module set within a standard structural grid, the lab areas can be customized for each research team and re-configured over time to address flexibility for an evolving curriculum. The module allows for standard benching and circulation clearances, while limiting the structural spans to help reduce vibration. Specialized BSL-3 and ABSL-3 research facilities and a small animal vivarium are removed from the main building circulation. The vivarium has direct access to a dedicated loading dock bay.

Using strategic roof overhangs and wall extensions to reduce solar heat gain, plus efficient lighting and mechanical systems, the LEED® Platinum facility is designed to reduce energy use to 52% below California energy code requirements. Energy efficiency, especially difficult in research labs, is achieved in part through transferring pre-conditioned supply air from non-lab spaces instead of using 100% outside air. This supports the university's goal to achieve "triple net zero"—zero net energy, zero landfill waste, and zero net greenhouse gas emissions.

Sustainable Design

LEED BD+C NC (New Construction) Platinum

两座建筑都与一个地下装卸区相连,以用于往返动物饲养室和实验室的货物运输。

Both buildings are served by and connected to an underground loading dock accommodating deliveries to and from the vivarium and laboratories.

教学楼内整合研究和学习空间对于创造理想的自发师生互动和跨学科互动至关重要。

An integration of research and learning spaces within the building is critical to creating the desired spontaneous student-faculty and interdisciplinary interactions.

生物医学科学和物理实验室包括研究和教学实验室, 以及办公室、配套和非正式座谈区域。

The Biomedical Science and Physics Laboratory includes both research and teaching laboratories, along with office, support, and informal colloquy areas.

加州大学默塞德分校可持续性研究与工程大楼

UC Merced Sustainability Research and Engineering Building

地点:美国加州默塞德
客户:加州大学默塞德分校
工作范围:建筑设计、结构工程设计、室内设计、图像标识设计
功能:教学设施、实验室、办公空间
用地面积:37.23 公顷
规模:17,243.17 平方米
建筑高度:18.29 米
竣工年份:2019

作为加州大学默塞德分校 2020 项目的重要一环,可持续发展研究与工程大楼是该校促进未来可持续发展使命的具体体现。作为新学术区的两个教学和研究实验室之一,它是现有校园和新校园的桥梁,为校园的新中心注入了活力和特色。

在教学楼内,干/湿实验室按照模块化规划原则进行组织,使教学楼的配置能够随着时间的推移而不断变化。在研究实验室和课堂实验室的交汇处,安排了会议室、休息室和座谈会空间,以便将各部门和各系的人员聚集在一起,创造充满活力的学习环境

为了创造一个与现有校园巧妙融合并增添校园特色的建筑,设计借鉴了校园位于中央山谷的实用、经济的农业建筑传统。简洁耐用的混凝土和波纹金属结构创造了灵活高效的项目式学习和研究空间,并在遮阳的地面“门廊”上设有本科生教室,以迎接所有学生的到来。

在这个气候极端的地方,这座 LEED 铂金建筑实现了大学雄心勃勃的三净零可持续发展目标:发电量与消耗量相等,零垃圾填埋,实现气候中和,同时利用精心调节的自然光创造人性化的空间。服务车辆可通过地面下的装卸区进入,以保持整个新校区的学生步行区无车辆通行。

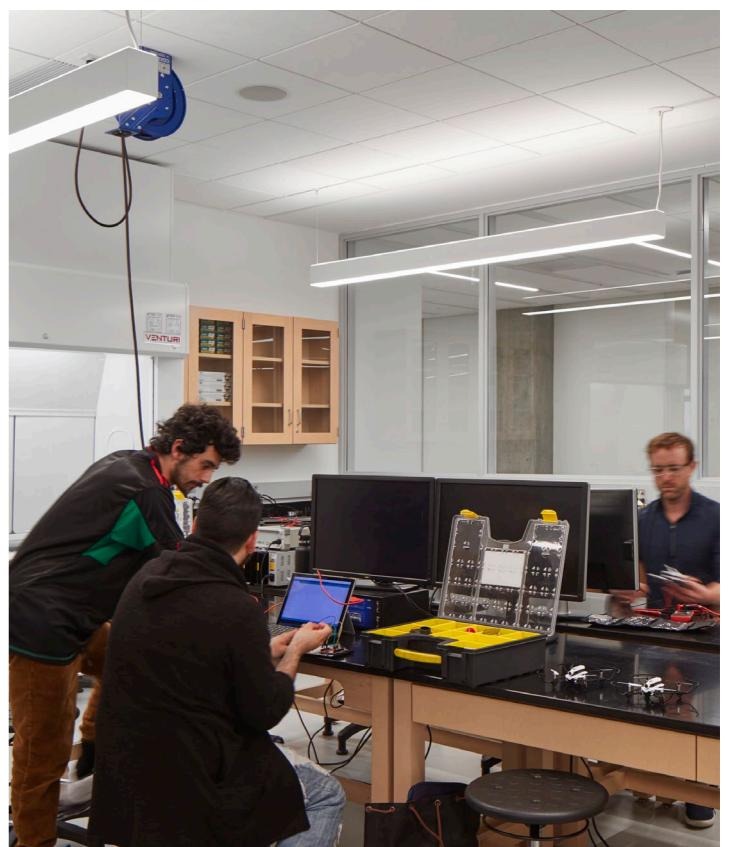
可持续性设计

LEED建筑设计+施工(新建工程)铂金级别认证

Location: Merced, California
Client: University of California, Merced
Scope: Architecture, Structural Engineering, Interior Design, Graphics
Program: Classroom, Labs, Office Space
Site Area: 37.23 Hectares
Size: 17,243.17 m²
Building Height: 18.29 m
Date: 2019

As an integral component of the UC Merced 2020 Project, the Sustainability Research and Engineering Building is a physical manifestation of the University's mission for promoting a sustainable future. One of two teaching and research laboratories anchoring the new Academic Quad, it bridges the existing and new campus areas contributing vitality and identity to a new heart of the campus.

Within the building, the wet/dry laboratories are organized around modular planning principles that enable the configuration of the building to evolve over time. At the intersection between research and class laboratories, conference rooms, break rooms, and colloquy spaces are arranged to bring people together across divisions and departments to create dynamic learning environments.


To create a structure that sensitively integrated with and added to the character of the existing campus, the design draws on the pragmatic and economical agricultural building traditions of the campus's Central Valley location. The simple durable concrete and corrugated metal structure creates flexible and efficient project-based learning and research spaces, and features undergraduate classrooms along a shaded ground-level 'porch' to welcome all students.

In a place of climate extremes, the LEED Platinum building met the University's ambitious triple-net-zero sustainability goals: to produce as much power as consumed, create zero landfill waste, and achieve climate neutrality, while creating spaces humanized with carefully modulated natural light. Service vehicle access is through a below-grade loading dock incorporated to maintain vehicle-free student pedestrian zones throughout the new campus.

Sustainable Design

LEED BD+C NC (New Construction) Platinum Certified

莱斯大学 Ralph S. O'Connor 工程与科学大楼

Rice University Ralph S. O'Connor
Engineering and Science Building

地点:美国德州休斯顿

客户: 莱斯大学

工作范围: 建筑设计、室内设计

功能: 教学设施、实验室、办公空间, 配套设施

用地面积:8,240 平方米

规模: 23,225.75 平方米

竣工年份: 2023

新的工程与科学大楼 (NESB) 体现了莱斯对发展、创新和增强校园结构的愿景。该建筑旨在加强和激活与历史悠久的工程院广场的联系, 并体现连通性、协作性和创造性。

NSEB加强地面层的校园人流, 提供具有高度功能和灵活性实验室的协作共享空间, 并创建一个创新的高性能设施, 以加强和激活历史悠久的校园。该建筑提供 250,000 平方英尺的新教室、创客空间、互动聚会区和活动空间、专用原型制作设施、办公室、咖啡厅、新的灵活最先进的实验室、自然科学与工程学院的核心设备空间, 以及世界一流的材料研究小组韦尔奇研究场所。

该建筑取代了老化的实验室, 并与相邻的住宅区和校园范围内的遮盖人行道建立了新的连接。开放的地面层通过宽敞的大堂、现代螺旋楼梯、温馨的咖啡馆和向户外开放的教室激活了相邻的广场。为了将校园延伸到建筑中, 一个五层高的中央中庭创造了一个活动中心, 将研讨室、休息区和非正式聚会空间聚集在一起顶层设有接待空间和美丽的室外露台, 既可作为接待场所, 又可作为研究空间。实验室和办公室尽可能向带有玻璃店面系统的聚会区开放, 以鼓励协作。

被动式设计策略抵消了实验室的能源消耗, 根据美国建筑师协会实验室 21 基准线, 该项目中的实验室能耗比一般实验室降低了 50%。设计团队采用的策略包括低窗墙比、优化日光通道、改进隔热、光伏基础设施以及外墙使用低碳砌体。此外, 该项目还配备了节能机械系统、微调的换气标准系统和实验室废热回收系统。

Location: Houston, Texas

Client: Rice University

Scope: Architecture, Interior Design

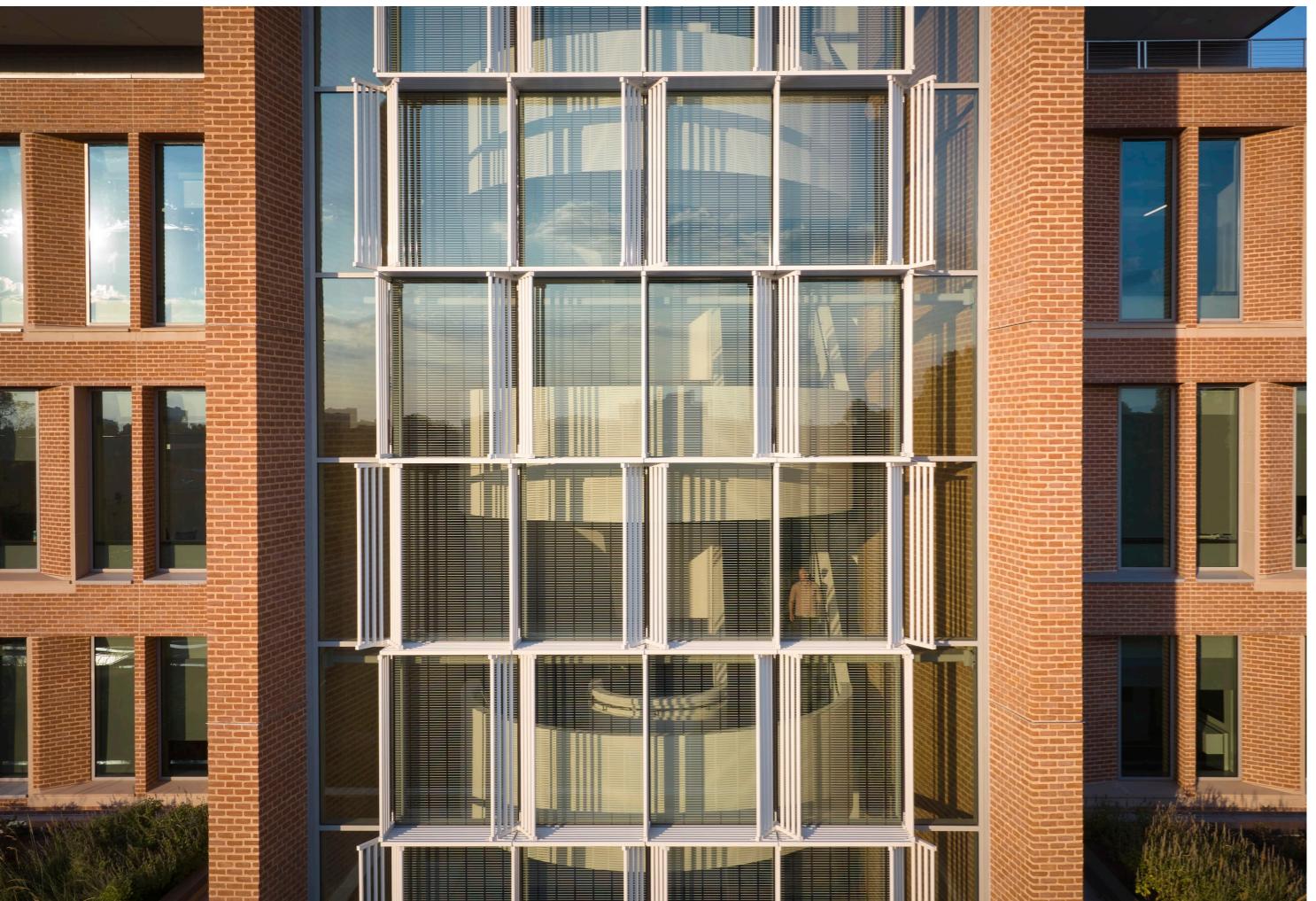
Program: Classroom, Labs, Office Space, Amenities

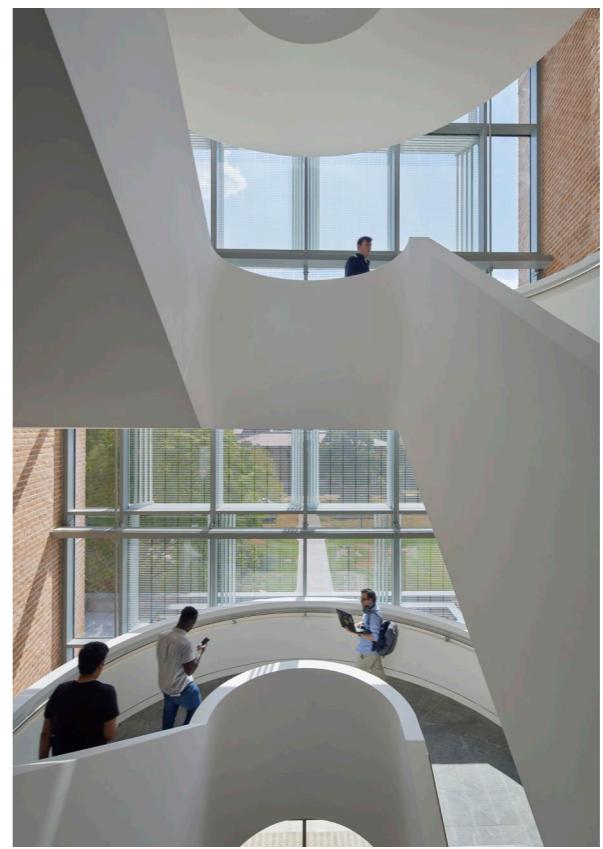
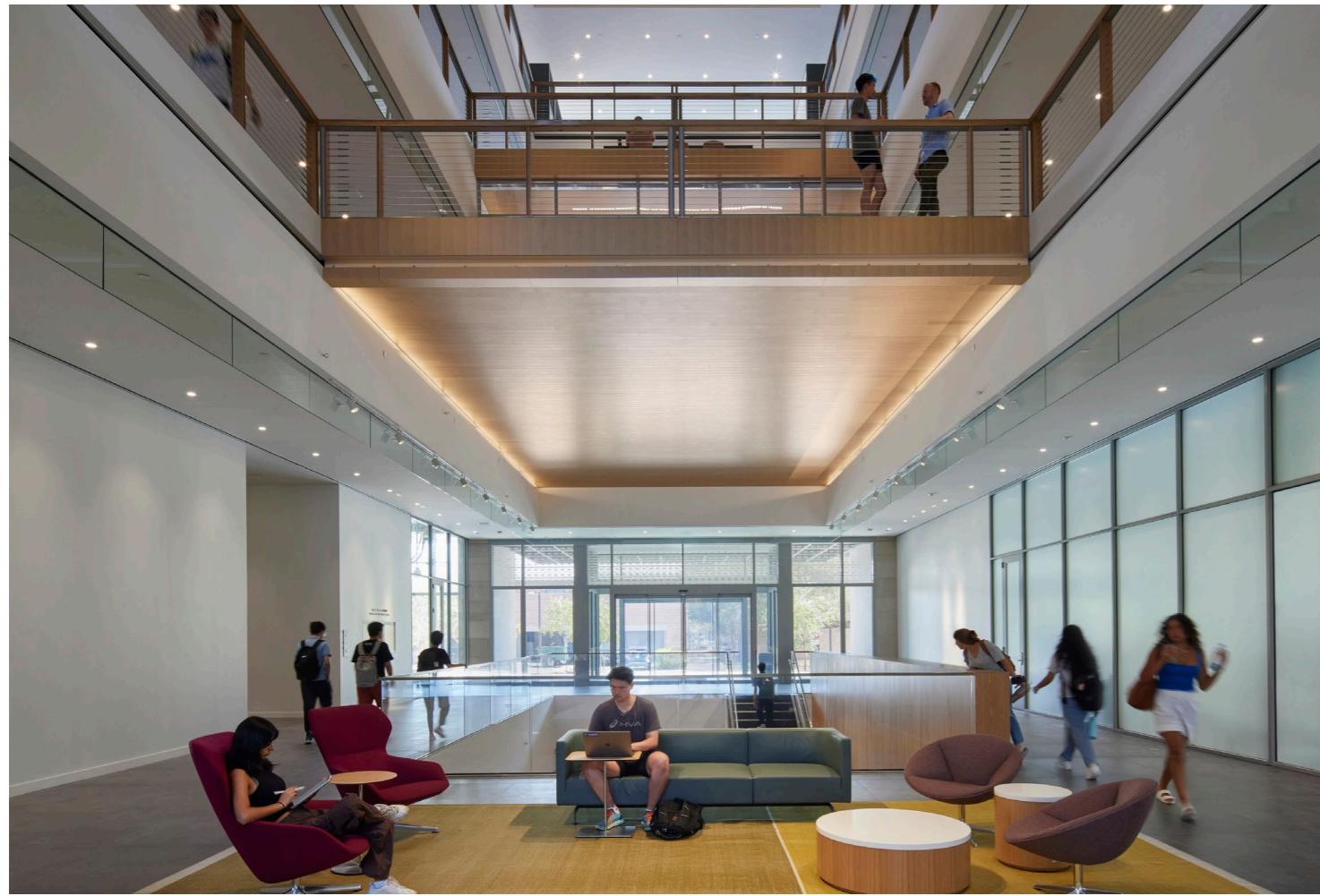
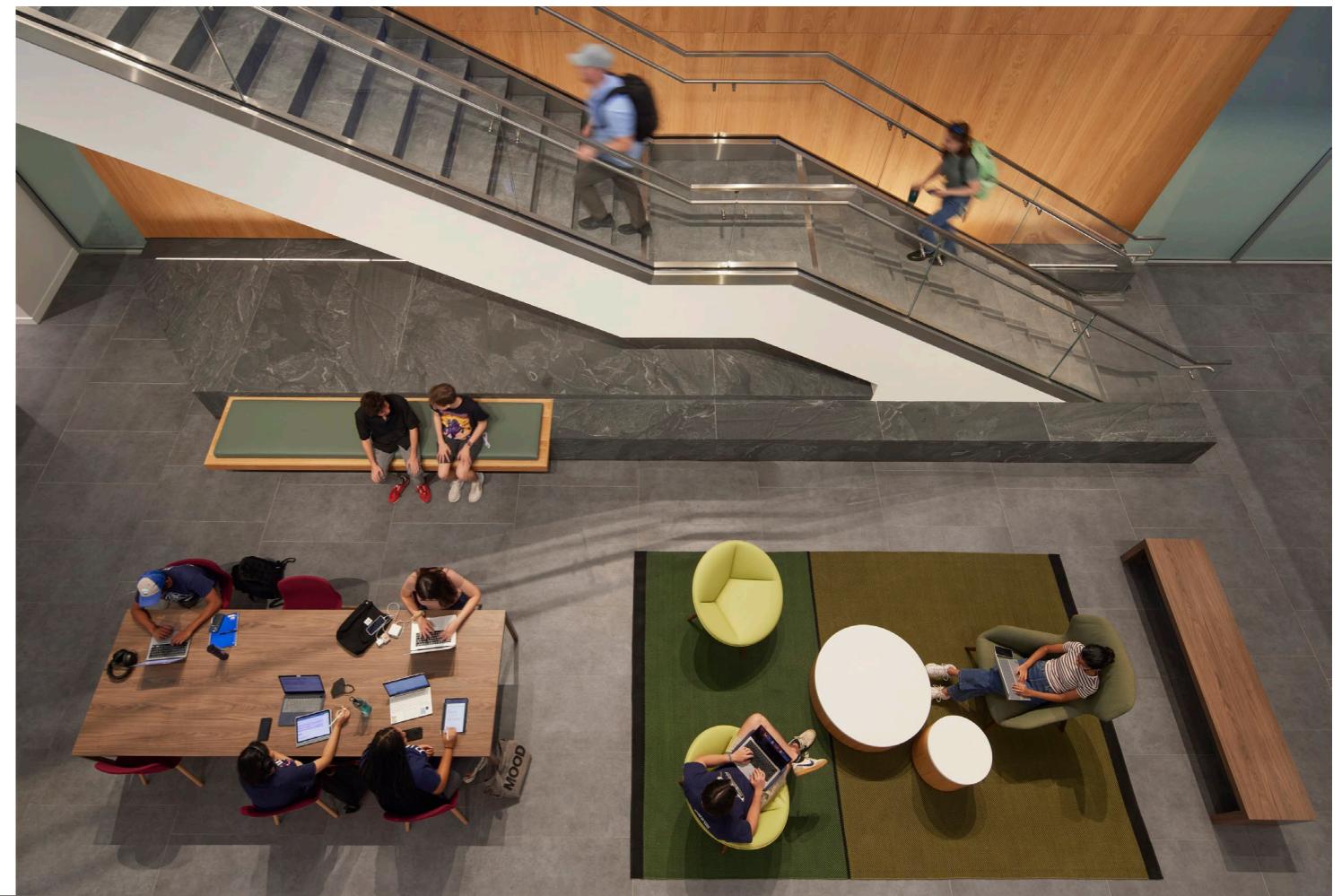
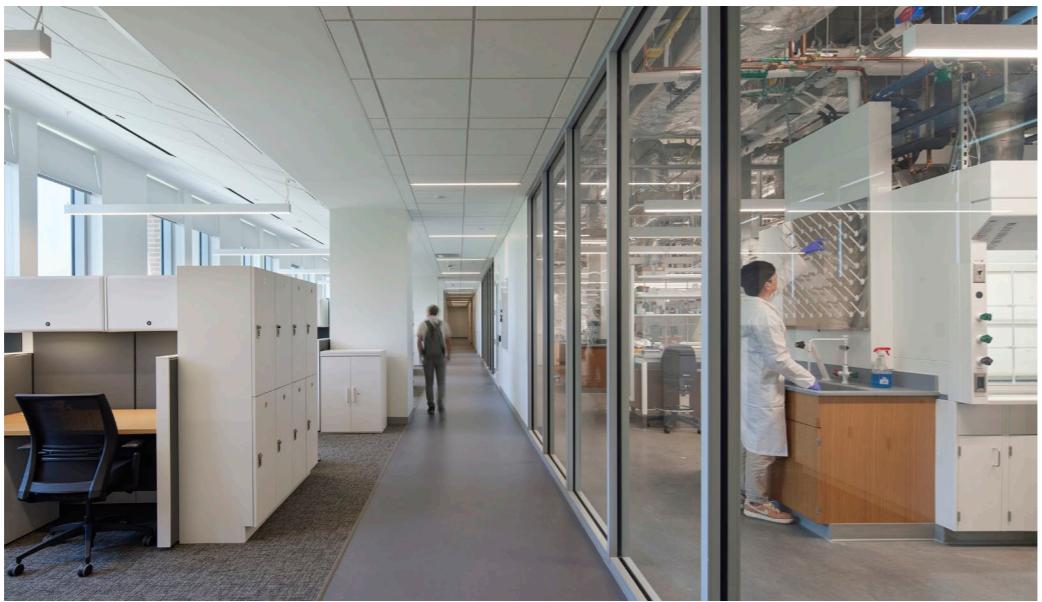
Site Area: 8,240 m²

Size: 23,225.75 m²

Date: 2023

The new Engineering and Science Building (NESB) embodies Rice's desire to grow, innovate, and enhance the campus fabric. The building is designed to strengthen and activate the connection to the historic Engineering Quad and embraces connectivity, collaboration, and creativity.


The NESB reinforces campus pedestrian flows at the ground level, provide collaborative shared spaces with highly functional and flexible labs, and create an innovative high-performance facility that strengthens and activates the historic campus. The building provides 250,000 square feet of new classrooms, maker spaces, interactive gathering areas and event spaces, a dedicated prototyping facility, offices, cafe, new flexible state-of-the-art laboratories, core equipment space for the Schools of Natural Science and Engineering, and space for the world-class materials research group, The Welch Institute.





The building replaces an aging lab and creates new connections to the adjacent Residential Quad and the campus-wide covered pedestrian walkway. The open ground level activates the adjacent plazas with an expansive lobby, modern spiral staircase, welcoming café, and classrooms that open to the outdoors. To extend the campus into the building, a five-story central atrium creates a hub of activity, where seminar rooms, break areas, and informal gathering spaces are grouped together. The top level boasts a reception suite and a stunning outdoor terrace that functions as both a reception venue and a research space. Labs and offices open to gathering areas with glazing storefront systems whenever possible to encourage collaboration.

Passive design strategies offset energy use in the laboratories to achieve a 50% reduction over a typical lab per AIA Labs 21 baseline. Strategies incorporated by the design team include a low window to wall ratio, optimized daylight access, improved insulation, PV-ready infrastructure, and the use of low-carbon masonry for the exterior walls. In addition, the project is equipped with energy efficient mechanical systems, a fine-tuned Air Change Criteria system and a Lab Exhaust Heat Recovery system.

加州大学旧金山分校研究与学术大楼

UCSF Research and Academic Building

地点:加州旧金山市
客户:加州大学旧金山分校
工作范围:建筑设计、室内设计
功能:研发办公、实验室
规模:16,258.03 平方米
建筑高度:30.48 米
竣工年份:2022

加州大学旧金山分校的研究与学术大楼为加州大学旧金山分校的医学、教学和研究教职员、教职员和医学生提供湿和计算实验室、办公设施以及教育中心。这个新设施将为加州大学旧金山分校扎克伯格旧金山综合医院的工作人员创造一个最先进的研究、学术和办公空间之家。

研究和学术大楼位于历史悠久的扎克伯格旧金山综合医院的入口处。该建筑设计坐落于历史悠久的 1915 年意大利文艺复兴时期风格的红砖建筑、1971 年的野兽派混凝土建筑和 2016 年的砖和玻璃新医院之间。新大楼位于医院综合体的入口处,设有一个开放的、以玻璃为主的角落,欢迎工作人员、教职员、患者、学生和访客前来园区。

加州大学旧金山分校的研究和学术大楼正在利用精益设计的原则作为设计建造项目交付。采用了综合项目团队方法,包括大学用户组、利益相关者、贸易伙伴以及设计师和工程师。整合团队分成特定的多学科创新团队,为复杂的设计问题开发解决方案。将大学利益相关者纳入创新团队使大学能够不断进行审查和反馈。将贸易伙伴包括在内,可以进行持续的可建造性审查和成本测试。

建筑的上层有开放的实验室阁楼,供 2 层和 3 层的湿实验室和计算实验室及 4 层和 5 层的计算实验室和行政区使用。2 至 5 层被设计为使用 11'-6" 规划模块的开放式实验室阁楼。在 2 和 3 层上,计算实验室与湿实验室相邻。第 4 和 5 层使用相同的规划模块,专用于计算实验室。楼宇系统立管和共享会议室沿建筑曲线设置。

开放式湿实验室和计算实验室被组织成大型社区,允许研究团队随着研究项目的变化而扩大和缩小。建筑框架允许随着时间的推移进行调整,循环系统旨在将二层装卸区与湿式和计算实验室连接起来,以便轻松移动物料并容纳大型设备。

Location: San Francisco California
Client: University of California, San Francisco
Scope: Architecture, Interior Design
Program: Research & Development Office, Labs
Size: 16,258.03 m²
Building Height: 30.48 m
Date: 2022

The UCSF Research and Academic Building provides wet and computational laboratories, office facilities, and an education center for the UCSF medical, teaching and research faculty, staff, and medical students. This new facility will create a state-of-the-art home for research, academic, and office spaces for UCSF personnel who staff the Zuckerberg San Francisco General Hospital.

The Research and Academic Building is located at the entrance to the historic Zuckerberg San Francisco General Hospital. The building was designed to sit comfortably between the historic 1915 red brick Italian Renaissance style buildings, the 1971 Brutalist Concrete Building and the 2016 brick and glass new hospital. The new building sits at the entrance to the hospital complex and features an open, glass dominated corner welcoming staff, faculty, patients, students and visitors to the campus.

The UCSF Research and Academic Building is being delivered as a Design-Build project utilizing the principles of LEAN design. An Integrated Project Team approach was utilized including University user groups, stakeholders, trade partners along with designers and engineers. The Integrated Team broke into specific multi-disciplinary innovation teams to develop solutions to complex design problems. The inclusion of the University Stakeholders in the Innovation teams allowed for continuous review and feedback from the University. Inclusion of the trade partners allowed for continuous buildability reviews and cost testing.

The building's upper levels have open laboratory lofts for wet and computation labs on Levels 2 and 3, and computational labs and administrative areas on Levels 4 and 5. Levels 2 through 5 were designed as open laboratory lofts utilizing an 11'-6" planning module. On levels 2 and 3, the computational laboratories are adjacent to the wet labs. Levels 4 and 5 utilize the same planning module and are dedicated to computational laboratories. Building system risers and shared meeting rooms are located along the building spine.

The open wet and computational labs are organized into large neighborhoods allowing for research teams to expand and contract as the research projects change. The framework of the building allows for adaptation over time and the circulation system is designed to connect the level two loading dock to the wet and computation laboratories to allow easy movement of materials and to accommodate large equipment.

生物医药ELEMENTUM大楼

Elementum

地点:新加坡

客户: Ho Bee Land Limited

工作范围: 建筑

功能: 科学

规模: 41,366平方米

竣工年份: 2023

Location: Singapore

Client: Ho Bee Land Limited

Scope: Architecture

Program: Science

Size: 41,366 sm

Date: 2023

自2000年代初期成立以来,Elementum一直是新加坡蓬勃发展的生物医学产业的中心。该公司坐落于Buona Vista街区的One-North创新区。经过数个阶段的开发,该研究中心不断扩展成一个充满活力的园区,这帮助确立了Buona Vista的地位。由Ho Bee Land开发的Biopolis第六期项目Elementum将建立通往该街区的北部门户,并以技术驱动、社区为本的设计提升园区的创新和协作精神。

12层结构的体量与其场地不寻常的形状相呼应:围绕周边呈U形弯曲,该建筑将为Elementum园区创造一个与众不同的视觉地标。地面层的一半以上是一个通往户外的中庭空间——该户外空间是周围公园和街道的延续。裙楼位于这个户外空间之上,包括第二层和第三层。在裙楼上,900平方米的绿色屋顶将为举办活动和租户聚集、协作和休息提供场所。这个绿色屋顶将被主要的实验室层包围,弯曲的结构中存在一系列的缩进。整个建筑将由高性能玻璃围护,这将优化能源效率,为该项目实现取得Green Mark Platinum认证的目标做出贡献。

这些实验室旨在供从生物医学初创公司到知名公司的多个租户使用。为了支持这些广泛的公司,实验室的面积将从73平方米到2,000平方米不等,并且其中每一个区域都能够随着租约变化转为办公室。为促进思想的交叉传播,这座建筑将拥有丰富的公共空间和便利设施——从缩进的露台到地面上显著加强的公共区域应有尽有。

该建筑将面向新加坡最新的国家公园之一——一条由24公里的铁路改造而成的林荫道路,称为“铁道走廊”。借助多孔的地面层,Elementum将无缝融入这一自然景观。阶梯式花园将铁道走廊与地面层商业区以及大量以前不存在的新社区空间连接起来。圆形剧场、新的游乐场和草坪将与走廊相结合,打造出一个欣欣向荣的社区目的地,不仅有益于租户的健康,而且还有助于整个Buona Vista区的繁荣。

可持续性设计

LEED建筑设计+施工(新建筑)铂金级别认证

新加坡建设局绿色标志铂金级认证

Since its inception in the early 2000s, Elementum, part of the One-North innovation district within the Buona Vista neighborhood, has been at the center of Singapore's thriving biomedical industry. Over several phases of development, the research hub has continually expanded into a vibrant campus, one that has helped define the identity of Buona Vista. Elementum, the sixth phase of Biopolis that is being developed by Ho Bee Land, will establish a northern gateway to this neighborhood, and elevate the innovative and collaborative spirit of the campus with a technologically driven, community-focused design.

The massing of the 12-story structure responds to the unusual shape of its site: Bending around the perimeter in a U-shape, the building will create a distinctive presence and visual marker for the Elementum campus. More than half of the ground level is an atrium space, open to the outdoors—a continuation of the surrounding parks and streets. The podium rises above this outdoor space, encompassing the second and third levels. Atop the podium, a 900-square-meter green roof will provide a setting for events and for tenants to gather, collaborate, and rest. This green roof will be surrounded by the main laboratory levels, in a curving structure that rises in a series of setbacks. The entire building will be enclosed in a high-performance glazing that will optimize energy efficiency, contributing to the project's Green Mark Platinum certification target.

The labs are designed for use by multiple tenants, from biomedical startups to more established companies. To support this broad array of companies, the labs will range in size from 73 square meters to 2,000 square meters, and each of these areas will be able to transition into offices as tenancy changes. To foster the cross-pollination of ideas, the building will be rich in communal spaces and amenities—from terraces on the setbacks to a significantly enhanced public realm on the ground.

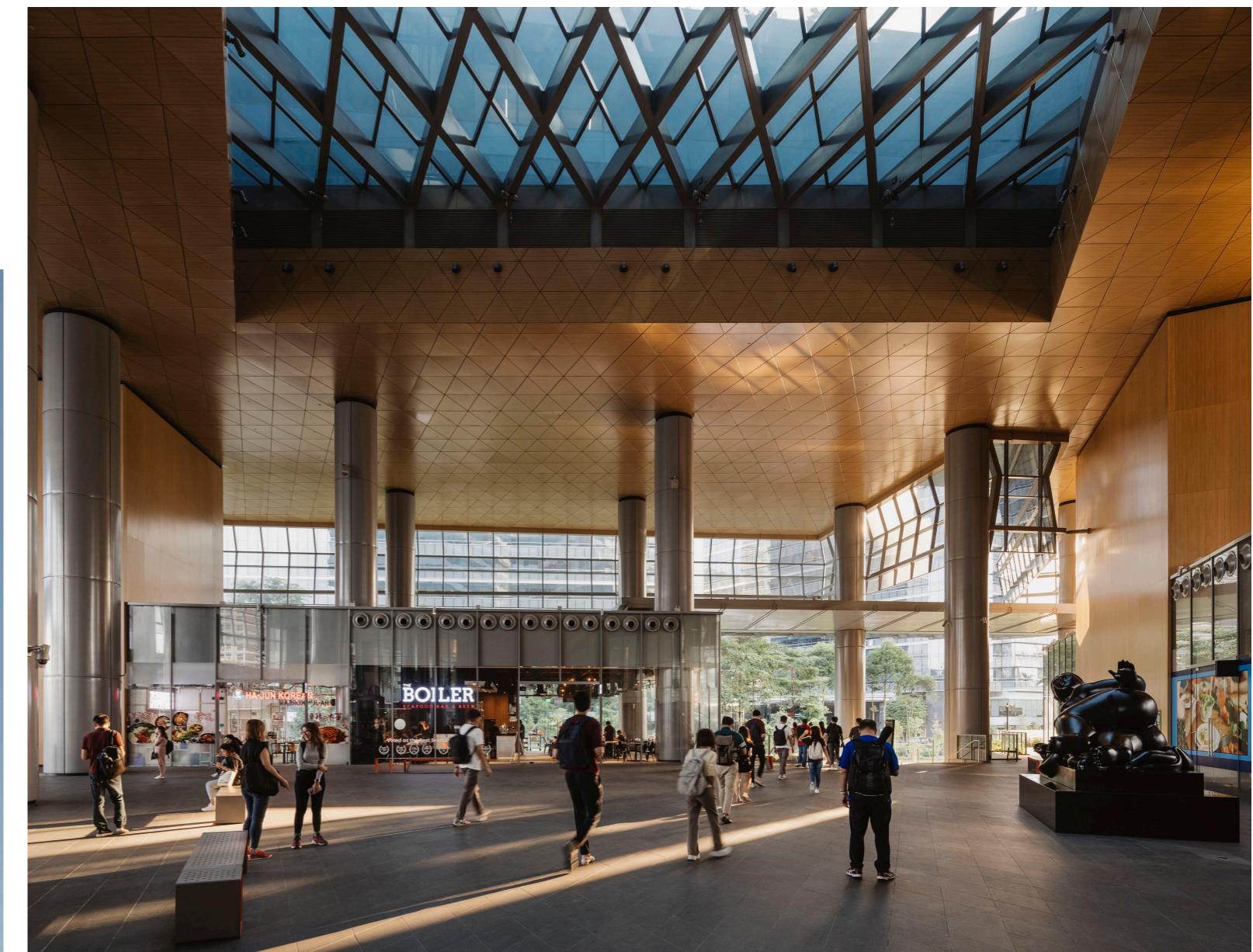
The building will face one of Singapore's newest national parks, a 24-kilometer railway-turned-greenway called the Rail Corridor. With a porous ground floor, Elementum will seamlessly integrate into this natural landscape. Stepping gardens will connect the Rail Corridor with the ground-level retail, as well as an abundance of new community spaces that did not exist before. An amphitheater, new playgrounds, and lawns will coalesce with the corridor to create a thriving community destination, not only for tenants' wellness, but for the entire Buona Vista district.

Sustainable Design

LEED BD+C (New Construction) Platinum Certified

BCA Singapore Green Mark Platinum Certified

[↓]


建筑外墙设计的方向使该项目能够实现新加坡Greenmark铂金级别的严格可持续发展认证目标。

The orientation of the building's enclosure positions the project to achieve the stringent sustainability certification target of Greenmark Platinum.

[↑]

[←]

[↑]

[←]

[↑] [←]

位于建筑首层的广场和中庭充当着公共社区设施和楼上研发社区之间的桥梁。

At the ground floor, the plaza and atrium serve as a bridge between the community programs and the R&D community of the tower above.

Genesis大厦

Genesis Towers

地点:美国加利福尼亚州南旧金山市
客户:Phase 3 Real Estate Partners
工作范围:建筑、室内设计、结构 + 土木工程
功能:研发办公、实验室、会议配套设施
用地面积:8.09 公顷
规模:63,229 平方米
高度:97.5 米
竣工年份:2019

Genesis大厦,如雕塑般的高层建筑,毗邻蜿蜒路径圣布鲁诺山(San Bruno Mountain)的101高速公路(Highway 101),在视觉上呼应了周围山脉的地
形。

作为进入南旧金山市的门户,Genesis大厦的设计综合了铝合金和石膏作为建筑的主要材料,同时并利用玻璃幕墙来塑立主立面的形象。位于建筑南侧的这一玻璃幕墙不仅让天然采暖和采光最大化,并且创造了戏剧化的光反效果,从而提高整座建筑的美学和价值。

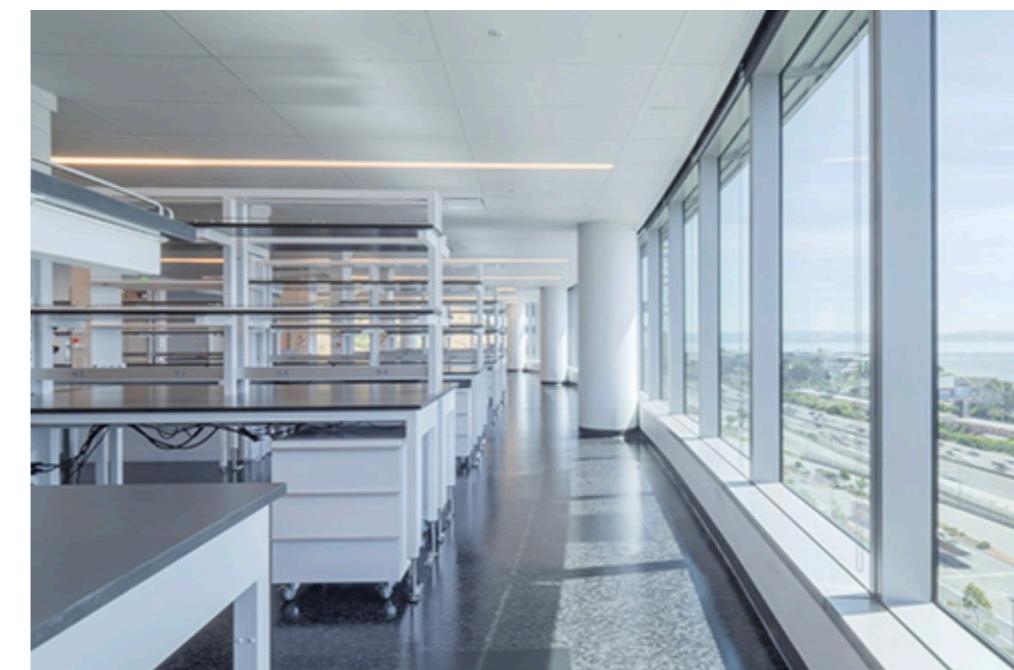
大厦由连绵薄纱般的玻璃幕墙围裹,幕墙向上延展直至越出屋
顶,形成透明的女儿墙。在白天,大厦的表皮从银色调到蓝色调再
变到暖色调,如同一幅不断变化的画布。由于大厦仅占据8.1公顷
(20英亩)地块中的3.2公顷(8英亩),超过一半的场地面积被留
作包括再种植计划在内的环境保护之用。这一再种植计划将有助于
恢复山林的原始边界,该边界曾在高速公路建设和湾区填筑过
程中遭到破坏和砍伐。

项目奖项与荣誉

2016 房地产年度奖,旧金山商业时代
2009 写字楼类 2009 年度奖:加州工程杂志

Location: South San Francisco, California
Client: Phase 3 Real Estate Partners
Scope: Architecture, Interior Design, Structural + Civil Engineering
Program: R & D office, Lab, Conference & Amenities
Site Area: 8.09 hectares
Size: 63,229sm
Height: 97.5 m
Date: 2019

Genesis Towers, sculptural high-rise located on a prominent site where Highway 101 curves past San Bruno Mountain, visually echoes the surrounding typography.



Genesis Towers serve as a visual gateway for South San Francisco. The tower's design incorporates aluminum and plaster as the main building materials while a glass curtain wall acts as the primary façade. Placed on the southern side of the building, the curtain wall can not only maximize heat gain and natural lighting, but also create a dramatic play of light reflection thereby enhancing the aesthetic presentation of the structure as a whole.

The towers are wrapped in a continuous, veil-like glass curtain wall which extends above the roof as a translucent glass parapet. Throughout the day, the skin becomes a shifting canvas, changing from silvers, to blues, to warm tones. With the tower occupying only 8 of the site's 20 acres, more than half of the area has been reserved for conservation efforts including a replanting program. This program will help to restore the mountain's original edge which was scarred during the making of the freeway and by cuts for bay-fill.

Project Awards and Recognition

2016 Real Estate Deals of the Year Award, San Francisco Business Times
2009 Best of 2009: Office Category, California Construction Magazine

[↑]
大堂高度形象化的石灰岩墙增添了元素的品质,同时让人想起了场地的岩石露头。
The lobby's highly figural limestone wall adds an elemental quality while recalling the site's rock outcropping.

罗氏诊断公司苏州园区

Roche Diagnostics Suzhou Campus

地点:江苏 苏州

客户:罗氏集团

工作范围:建筑、室内设计、设备工程、结构+土木工程

功能:办公、实验室、厂房

规模:150,000 平方米

竣工年份:2018

Location: Suzhou, Jiangsu

Client: Roche

Scope: Architecture, Interior Design, MEP, Structural + Civil Engineering

Program: Office, Lab, Production Space

Size: 150,000 sm

Date: 2018

苏州罗氏诊断公司位于一个150,000平方米的园区内,由10座建筑组成,并点缀着零星的苏州园林。这是这家总部位于瑞士的医疗诊断公司在中国开设的首家工厂,其总体规划和建筑设计由SOM负责完成。

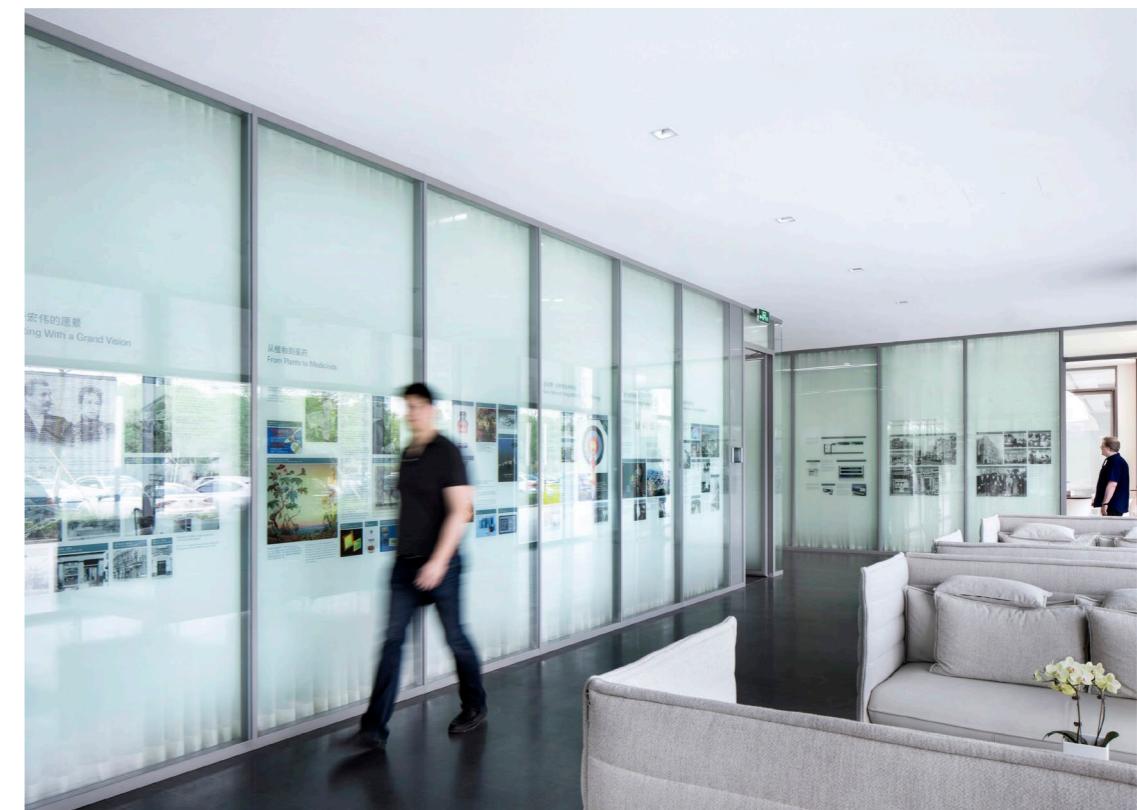
园区的设计以苏州历史园林为灵感,苏州园林被列入联合国教科文组织世界文化遗产名录,并且被视为中国景观设计的经典杰作。SOM借鉴当地传统为罗氏公司制定的场地规划包括一系列相互连接的步道和花园,引导员工和访客前往园区各处。制造大楼环绕着以现代风格重现的中式古典漫步园林。宁静的池塘和葱郁的绿地,点缀以石头装饰,其中还穿插着步道与小桥。

园区通过一系列高性能策略响应当地的环境要求。凭借采用再生和当地采购材料的高性能外围结构、内部可再生能源以及将饮用水使用量减少100%的节能设计,LEED铂金级别行政大楼具为业界树立了标杆。

可持续性设计

LEED BD+C NC 铂金级

项目奖项与荣誉


2018 最佳创新绿色建筑亚洲国际房地产投资交易会
(MIPIM Asia)

Sustainable Design

LEED® BD+C NC Platinum

Project Awards and Recognition

2018 Best Innovative Green Building, MIPIM Asia

创智天地

Knowledge Innovation Community (KIC)

地点:中国 上海

客户: 瑞安地产有限公司

工作范围:建筑、设备工程、结构+土木工程、城市设计+规划

功能: 商业+办公、教育、综合功能

规模: 162,890 平方米

高度: 20 米 (4 层)

竣工年份: 2006

Location: Shanghai, China

Client: Shiu On Properties Limited

Scope: Architecture, MEP, Structural + Civil Engineering,

Urban Design + Planning

Program: Commercial + Office, Education, Mixed Use

Size: 162,890 sm

Height: 20 m (4 stories)

Date: 2006

作为历史悠久的大都会，上海已成为技术研究和进步的重要中心。城市东北部的杨浦区在这一演变中扮演着重要角色。区内有17所大学和无数的初创企业，与加州硅谷等高强度合作和创业的其他地区一样充满活力。

SOM为该区的创智天地构思了总体规划。该方案涵盖了研究、商业、办公空间的设计以及文化元素，旨在打造一个生机勃勃的社区，让新的创意不断涌现并投入市场。

用地东边的玻璃幕墙建筑为新兴公司提供了光线充足的办公空间，而大型石材建筑则入驻了老牌企业。会议中心坐落于北端，商业和教育类建筑位于南端，有助于振兴该区域，并吸引附近大学和相邻科技园区的人们来访。各个公共广场将以各种材料的拼贴为特色，与用地历史建立触觉上的联系。

项目奖项与荣誉

2019 亚太卓越奖, 城市土地研究所 (ULI) 组织的
全球卓越大赛奖。

2016 最佳综合功能开发项目, 亚洲国际房地产投资交易会
(MIPIM Asia)

2006 城市设计奖, 美国建筑师协会-旧金山分会

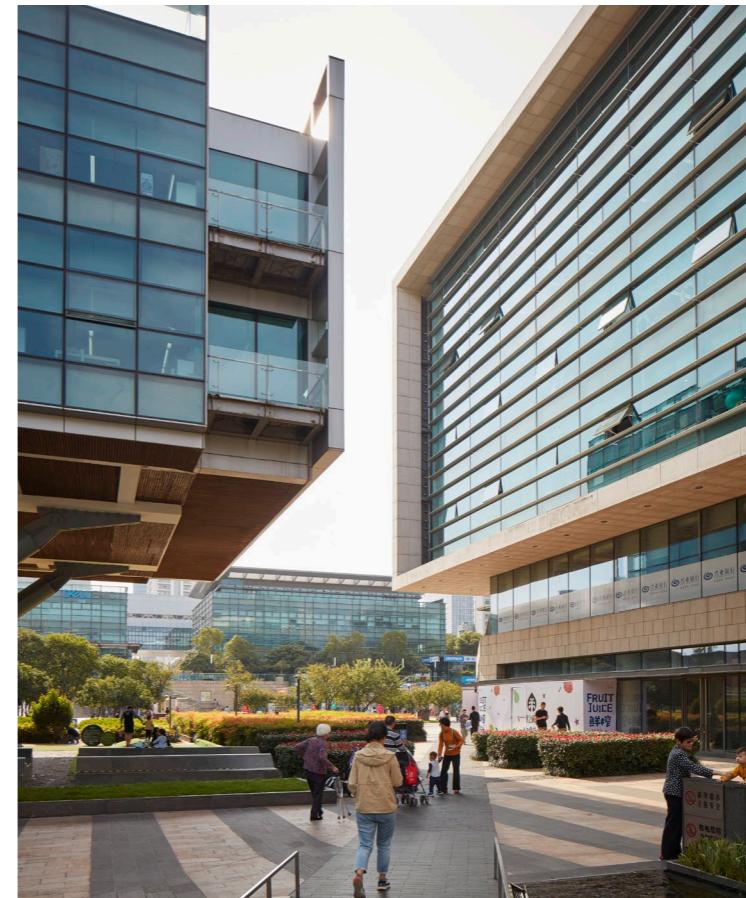
2005 风潮:构建当代景观, 现代艺术博物馆

A vast metropolis steeped in history, Shanghai has become a key hub for technological research and advancements. The Yangpu District in the northeastern part of the city is playing a significant role in this evolution. With 17 universities and countless start-up ventures, the district possesses the same kind of energy as other intensely collaborative and entrepreneurial areas like California's Silicon Valley.

Within this district, SOM has conceived a master plan for the Knowledge and Innovation Community. The scheme encompasses research, retail, and office space, along with cultural elements—all intended to create a vibrant community where new ideas can flourish and be brought to market.

Glazed buildings along the site's eastern edge provide light-filled offices for emerging companies, while larger, stone structures accommodate established businesses. A conference center on the north end and retail and educational buildings on the south help energize the area and attract visitors from nearby universities and an adjacent tech park. Public plazas will feature a collage of materials that provide a tactile link to the site's history.

Project Awards and Recognition

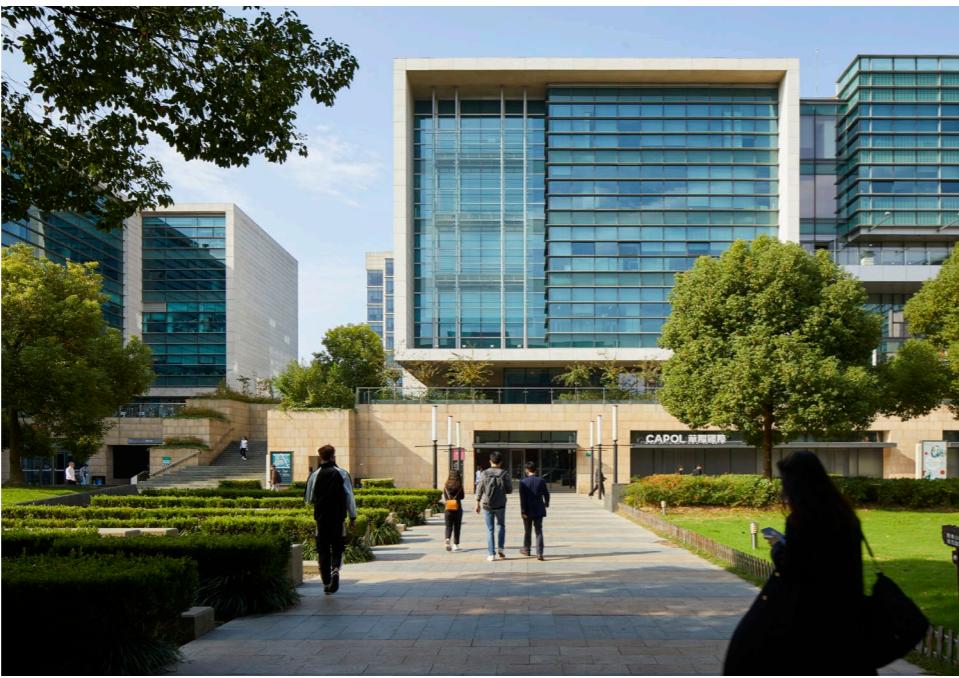


2019 Asia Pacific Awards for Excellence, Urban Land Institute

2016 Best Mixed Use Development, MIPIM Asia

2006 Urban Design Award, AIA San Francisco

2005 Groundswell: Constructing the Contemporary
Landscape, Museum of Modern Art



[↑][←]
该方案旨在创建一个充满活力的社区，使新的想法得以繁荣并推向市场。
The scheme is intended to create a vibrant community where new ideas can flourish and be brought to market.

[→]
公共广场将展示一系列拼贴材料，这些材料提供了与该场地历史的触觉链接。

Public plazas will feature a collage of materials that provide a tactile link to the site's history.

康奈尔大学纽约市技术学院校区——框架规划

CORNELL TECH CAMPUS FRAMEWORK PLAN

地点:美国纽约州纽约市
客户:康奈尔大学
工作范围: 规划,建筑设计
功能: 高等教育
用地面积:5 公顷
设计完成: 2017年

SOM与康奈尔大学以及纽约市合作,为康奈尔大学纽约市技术学院(应用科学领域的新大学校园,总建筑面积18.58万平方米)作总体规划和设计。

学院内不设任何传统学科系部,而是为设计师、工程师、企业家和科学家提供一个开放式协作型社区。在这里,他们的协作将模糊学术世界和商业世界的边界。这个罗斯福岛上的校园占地5公顷,可容纳2500名硕士生和博士生、500名教职员、1000个住宅单元、一家酒店、一个行政教育中心、以及建筑面积4.645万平方米的供科技公司和相关企业使用的可租赁空间。

可持续性是该项目设计的驱动力之一,一期建设涵盖纽约市最大的净零能耗建筑。康奈尔大学纽约市技术学院的学院功能按互联媒体、更健康的生活和建造环境组织成三个多学科枢纽。校园内的主要学术和研究活动通过这三个枢纽将产生和吸引包括基础和应用研究、企业合租以及孵化项目在内的大量的商业和创业活动。

可持续性设计

LEED® ND铂金级

项目奖项与荣誉

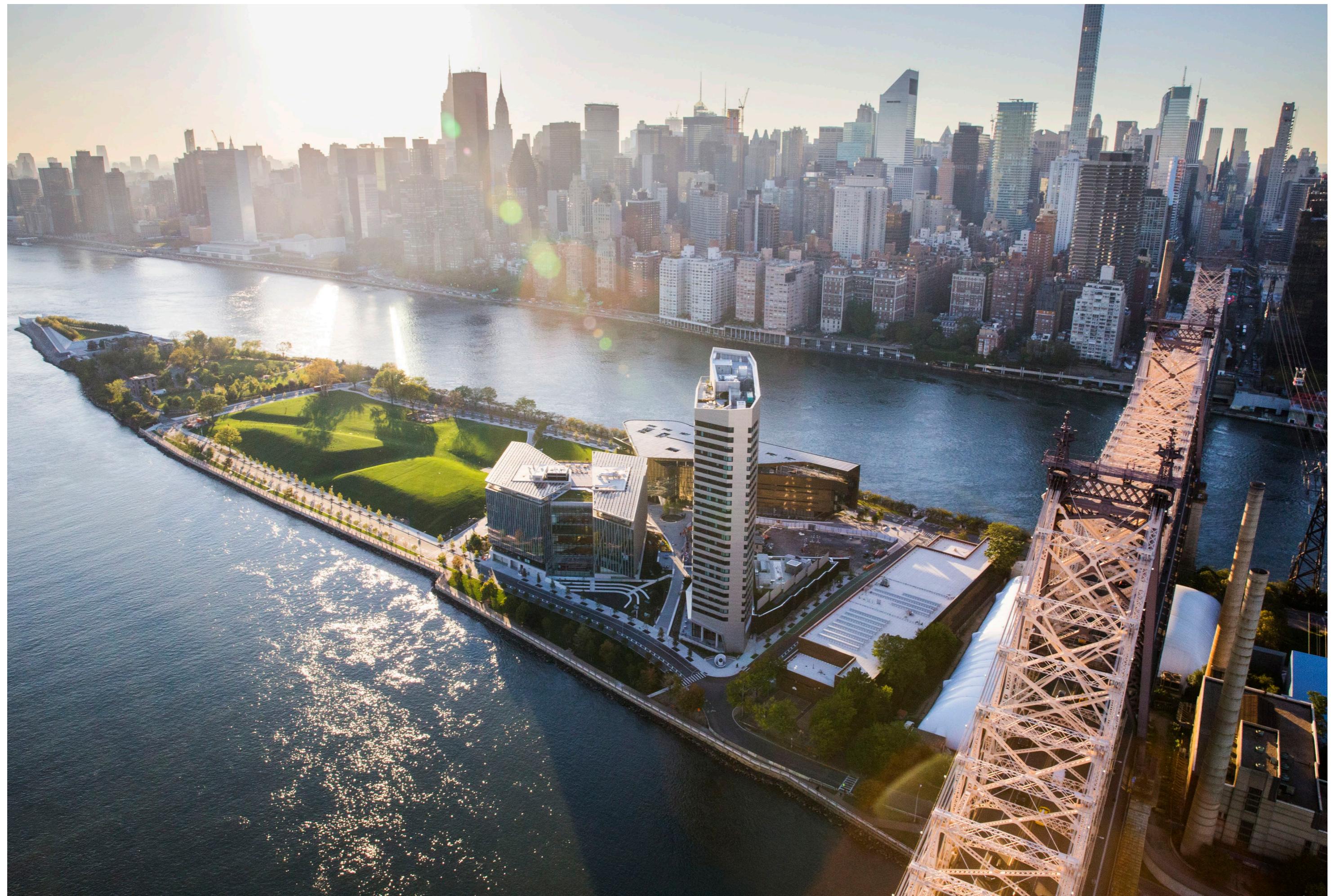
2020年, AIA全国奖项, 美国建筑师协会(AIA)
2020年, 美国景观设计师协会设计优异奖
2020年, 美国建筑师协会(AIA)区域与城市设计协会荣誉奖
2019年, 卓越开发奖:入围, 城市土地学会纽约分会(ULI NY)
2019年, 美国注册建筑师协会国家设计荣誉奖
2018年, A+决赛入围 - 建筑+协作,《Architizer》

Location: New York, New York, USA
Client: Cornell University
Scope: Planning, Architecture
Program: Higher-Ed
Site Area: 5 hectares
Completion: 2017

In collaboration with Cornell University, and the City of New York, SOM is master planning and building Cornell NYC Tech, a new 185,800 sm applied science university campus.

Free of academic departments, the school will feature an open and collaborative community of designers, engineers, entrepreneurs, and scientists who are blurring the boundary between the academic and commercial world. The 5-hectare Roosevelt Island campus incorporates 2,500 master's and doctoral degree students, 500 faculty, 1,000 housing units, a hotel and an executive education center, as well as 46,450 square meters of space for leasing to tech companies and related business.

Sustainability is a driving force behind the design, with Phase I including construction of New York City's largest net-zero energy building. The academic program at Cornell NYC Tech is organized into three multidisciplinary hubs for connective media, healthier life and the built environment. Through these hubs, primary academic and research activities at the campus will generate and attract substantial commercial and entrepreneurial activity, including basic and applied research, corporate co-tenancies, and incubator programs.


Sustainable Design

LEED® ND Platinum

Project Awards and Recognition

2020, AIA National, AIA National
2020, Design Award of Merit, American Society of Landscape Architects
2020, Institute Honor Award for Regional & Urban Design, American Institute of Architects (AIA)
2019, Award of Excellence in Development: Finalist, Urban Land Institute New York Chapter (ULI NY)
2019, National Design Award of Honor, Society of American Registered Architects
2018, A+ Finalist - Architecture +Collaboration, Architizer

哈佛大学西北科学大楼

Harvard Northwest Science Building

地点:美国马萨诸塞州坎布里奇

客户: Harvard University

工作范围:建筑、室内设计、结构+土木工程

功能:教育、医疗+科学

规模: 49,240 平方米

高度: 28 米 (4 层)

竣工年份: 2008

Location: Cambridge, Massachusetts

Client: Harvard University

Scope: Architecture, Interior Design, Structural + Civil

Engineering

Program: Education, Health + Science

Size: 49,240 sm

Height: 28 m (4 stories)

Date: 2008

建成后,西北科学大楼成为哈佛大学近些年规模最大的建筑项目。内设神经科学、生物工程、计算分析等项目部门的这栋大楼,现已成为新一代研究环境的典范。

SOM开始设计该项目时,客户提了几点具体要求。哈佛大学想要的是一栋高效且灵活的建筑,能够满足不断变化的需求;一栋可以在最短的时间内建成的大楼;一件与周围环境和谐的永恒建筑艺术品。建筑选址带来的挑战非比寻常,因为它穿插于六栋已有建筑之间,周边一带宁静且有许多历史建筑。

为了在当时这种环境下满足客户的要求,设计团队紧挨着大学建筑物增加了两块交叉并以直线围成的区域,还铺设了新的路径和草坪。建筑内部,聚会区域零散地分布,实验室则是可配置的“阁楼”设计,便于学校灵活地将空间重新分配给不同研究团队使用。这座大楼的规模适宜,也符合哈佛大学这座历史名校的组织架构和建筑风格。

项目奖项与荣誉

2013 结构系统设计类优秀奖,美国土木工程师学会 (ASCE) ——建筑工程学院 (AEI)

2013 最具创意项目,美国土木工程师学会 (ASCE) ——建筑工程学院 (AEI)

2010 优异奖:新工程项目,北加州结构工程师学会

2010 杰出奖:新建建筑类,加州结构工程师学会

2010 Harleston Parker奖章:提名奖,美国建筑师协会——波士顿建筑师协会

2009 年度实验室奖:最高荣誉,《研发》杂志

2009 优秀奖,国际室内设计协会——北加州分会

Upon its completion, the Northwest Science Building marked Harvard University's largest project in recent history. The facility houses neuroscience, bioengineering, computational analysis, and other programs under one roof and has become a model for a new generation of research environments.

When SOM set out to design the project, the client had several specific requests. The university wanted a highly efficient and flexible facility that could meet rapidly changing needs; a building that could be completed in as little time as possible; and a timeless piece of architecture that worked in concert with its surroundings. The site presented unusual challenges, as it was woven between six existing buildings and faced a quiet, historic neighborhood.

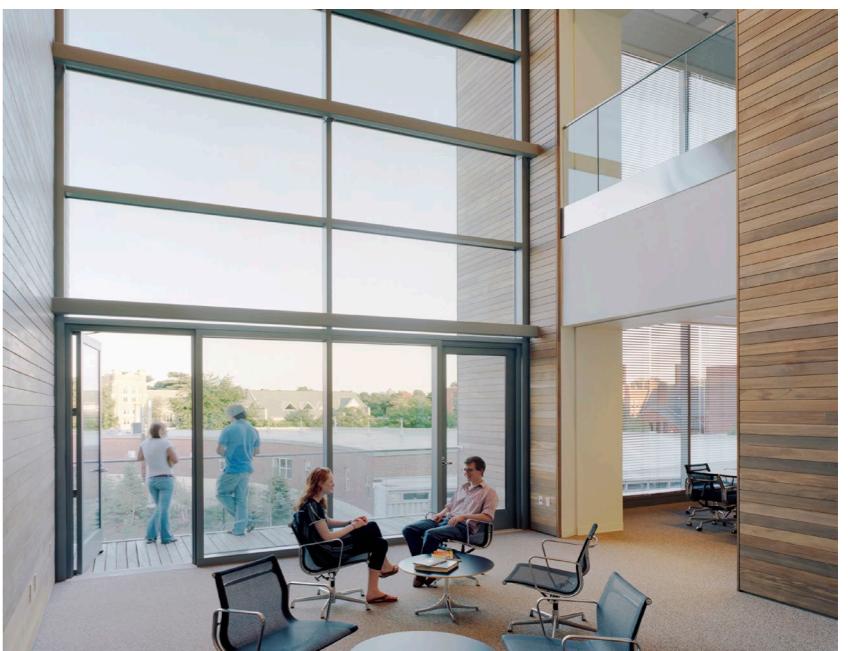
In response to these needs and conditions, the design team tightly stitched two intersecting, rectilinear volumes into the university fabric and added new paths and grassy yards. Inside, gathering spaces are sprinkled throughout, and laboratories act as configurable “lofts,” allowing the university to easily reassign areas to research teams. The building is appropriate in scale and embraces the organizational structure and architectural language of Harvard's storied campus.

Project Awards and Recognition

2013 Award of Merit for Structural Systems Design, American Society of Civil Engineers (ASCE)—Architectural Engineering Institute (AEI)

2013 Most Innovative Project, American Society of Civil Engineers (ASCE)—Architectural Engineering Institute

2010 Award of Merit: New Construction, Structural Engineers Association of Northern California


2010 Award of Excellence: New Construction Category, Structural Engineers Association of California

2010 Harleston Parker Medal: Finalist, AIA—Boston Society of Architects

2009 Lab of the Year Award: High Honors, R&D Magazine

2009 Merit Award, International Interior Design Association - Northern California Chapter

[↑]
通风良好且光线充足的楼梯空间为整个建筑内的通行提供便利,同时也是自然的集会场所。
Airy and day-lit stair spaces facilitate easy passage throughout the building and act as natural gathering places.

[↑]
实验室是可配置的“阁楼”设计,便于学校灵活地将空间重新分配给不同研究团队使用。
Laboratories act as configurable “lofts,” allowing the university to easily reassign areas to research teams.

加州大学旧金山分校桑德勒神经科学中心

UCSF Sandler Neurosciences Center

地点:美国 加利福尼亚州旧金山

客户:加州大学旧金山分校

工作范围: 建筑、室内设计、结构+土木工程

功能: 教育、医疗+科学

规模: 22,010 平方米

高度: 26 米 (5 层)

竣工年份: 2013

Location: San Francisco, California

Client: University of California San Francisco

Scope: Architecture, Interior Design, Structural + Civil Engineering

Program: Education, Health + Science

Size: 22,010 sm

Height: 26 m (5 stories)

Date: 2013

这座引人注目的设施位于加州大学旧金山分校(UCSF)校园内,是数个全球领先的神经系统科学研究计划的大本营。其设计初衷是提供一个促进思想交流的环境。

建筑室内空间围绕着一个五层高的露天中庭布局,在视觉上联系整个建筑内部。会议室和休息室位于人流密集区域,而户外庭院则是令人神清气爽的集会场所。其他功能空间包括干、湿实验室、一个成像中心和一个礼堂。

设施采取了诸多可持续性措施。天窗和自然通风有助于降低建筑的能耗,连续的曲面玻璃立面则让教员办公室获得充足的日光。这座建筑已获得LEED®黄金级别认证,并且是Labs21(一项旨在表彰可持续性实验室设计的联邦计划)的标杆项目。

可持续性设计

LEED绿色建筑+施工(新建工程) 黄金级别认证

项目奖项与荣誉

2013 优胜者,最佳研发新项目,《旧金山商业时报》

2013 设计建造奖——地区类,美国设计建造协会(DBIA) 西太平洋区(WPA)

Located on the campus of the University of California, San Francisco (UCSF), this striking facility houses several of the world's leading neuroscience research programs. Providing an environment that fosters the cross-pollination of ideas was a driving force behind the building's design.

The interior is organized around a five-story, open-air atrium that provides visual connections throughout the building. Meeting and break rooms are located in high-traffic areas, while an outdoor courtyard serves as a refreshing area to congregate. Other programmatic elements include wet and dry laboratories, an imaging center, and an auditorium.

The facility has a number of sustainable features. Skylights and natural ventilation help reduce the building's energy consumption, and faculty offices receive ample daylight thanks to a continuous, curved glass facade. The building has earned LEED® Gold certification and is a benchmark project for Labs21, a federal program recognizing sustainable laboratory design.

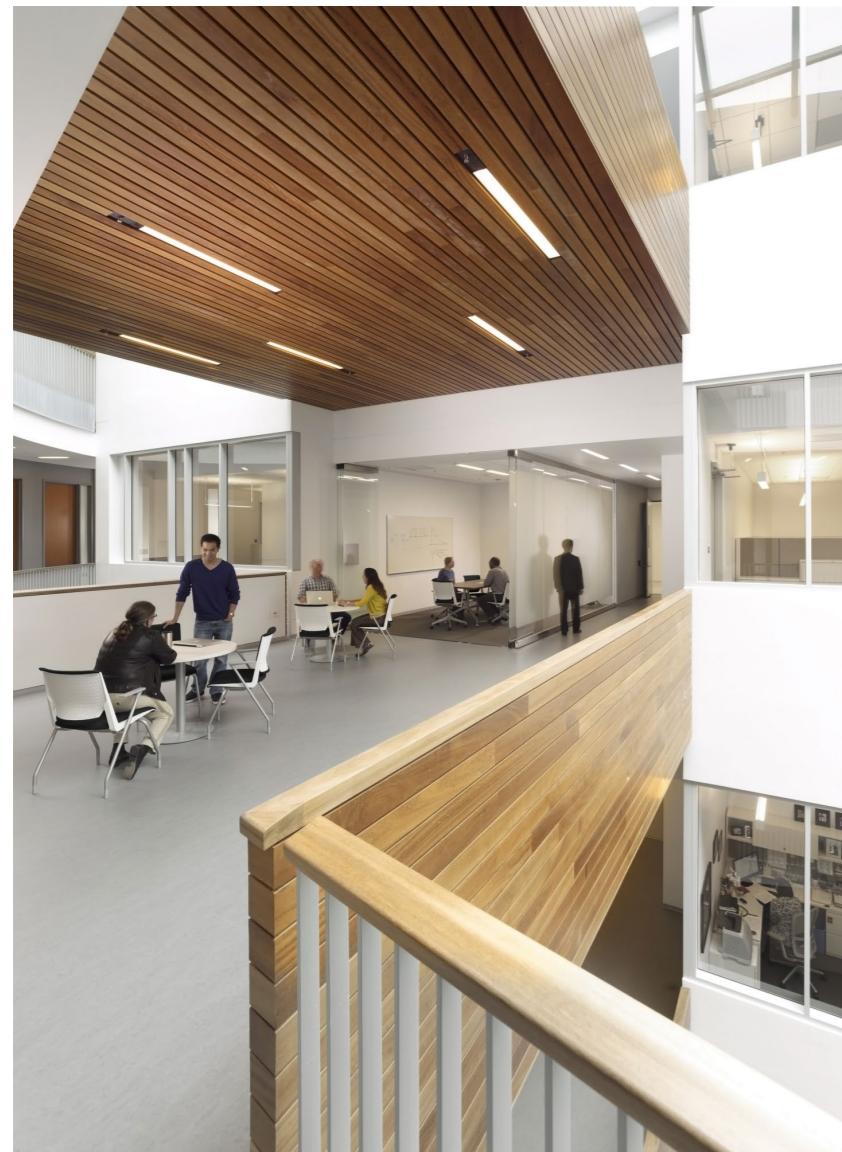
Sustainable Design

LEED-BD+C (New Construction) Gold Certified

Project Awards and Recognition

2013 Winner, Best New R&D Project, San Francisco Business Times

2013 Design Build Award - Regional, Design-Build Institute of America (DBIA) Western Pacific Region (WPA)


内部围绕一个五层的露天中庭进行组织,提供整个建筑给人的视觉连贯性。

The interior is organized around a five-story, open-air atrium that provides visual connections throughout the building.

[←]
为了长期节省资源并最大程度地提高灵活性，
该实验室被认为是“科学的阁楼”。
To conserve resources over the long term
and maximize flexibility, the laboratory
was conceived of as a 'Loft for Science'.

WWW.SOM.COM

Lilian Zhuang (庄媛媛)

国内商务, 项目经理
Project Manager

Skidmore, Owings & Merrill
No 288 South Shaanxi Road
Floor 15, Two ICC
Shanghai 200031, China

邮箱 Email: lilian.zhuang@som.com
电话 Tel: (+86) 136-8161-4127